An orphan histidine kinase, OhkA, regulates both secondary metabolism and morphological differentiation in Streptomyces coelicolor.
نویسندگان
چکیده
We report here the physiological and genetic characterization of an orphan histidine kinase (HK) (OhkA, SCO1596) in Streptomyces coelicolor and its homolog (OhkAsav, SAV_6741) in Streptomyces avermitilis. The physiological analysis showed that the ohkA mutant of S. coelicolor exhibits impaired aerial mycelium formation and sporulation and overproduction of multiple antibiotics on mannitol-soy flour (MS) medium, especially actinorhodin (ACT) and calcium-dependent antibiotic (CDA), and disruption of ohkAsav in S. avermitilis also led to the similar phenotypes of impaired morphological differentiation and significantly increased oligomycin A production. DNA microarray analysis combined with real-time reverse transcription-PCR (RT-PCR) and RNA dot blot assay in the S. coelicolor ohkA deletion mutant confirmed the physiological results by showing the upregulation of genes involved in the biosynthesis of ACT, CDA, undecylprodigiosin (RED), a yellow type I polyketide (CPK, SCO6273-6289), and a sesquiterpene antibiotic, albaflavenone (SCO5222-5223). The results also suggested that the increased production of ACT and RED in the mutant could be partly ascribed to the enhanced precursor malonyl coenzyme A (malonyl-CoA) supply through increased transcription of genes encoding acetyl-CoA carboxylase (ACCase). Interestingly, DNA microarray analysis also showed that deletion of ohkA greatly downregulated the transcription of chpABCDEFGH genes essential for aerial mycelium formation by S. coelicolor on MS medium but significantly increased transcription of ramS/C/R, which is responsible for SapB formation and regulation and is normally absent on MS medium. Moreover, many other genes involved in development, such as bldM/N, whiG/H/I, ssgA/B/E/G/R, and whiE, were also significantly downregulated upon ohkA deletion. The results clearly demonstrated that OhkA is an important global regulator for both morphological differentiation and secondary metabolism in S. coelicolor and S. avermitilis.
منابع مشابه
The Orphan Response Regulator Aor1 Is a New Relevant Piece in the Complex Puzzle of Streptomyces coelicolor Antibiotic Regulatory Network
Streptomyces coelicolor, the best-known biological antibiotic producer, encodes 29 predicted orphan response regulators (RR) with a putative role in the response to environmental stimuli. However, their implication in relation to secondary metabolite production is mostly unexplored. Here, we show how the deletion of the orphan RR Aor1 (SCO2281) provoked a drastic decrease in the production of t...
متن کاملPotato Suberin Induces Differentiation and Secondary Metabolism in the Genus Streptomyces
Bacteria of the genus Streptomyces are soil microorganisms with a saprophytic life cycle. Previous studies have revealed that the phytopathogenic agent S. scabiei undergoes metabolic and morphological modifications in the presence of suberin, a complex plant polymer. This paper investigates morphological changes induced by the presence of potato suberin in five species of the genus Streptomyces...
متن کاملSarA influences the sporulation and secondary metabolism in Streptomyces coelicolor M145.
The filamentous bacteria Streptomyces exhibit a complex life cycle involving morphological differentiation and secondary metabolism. A putative membrane protein gene sarA (sco4069), sporulation and antibiotic production related gene A, was partially characterized in Streptomyces coelicolor M145. The gene product had no characterized functional domains and was highly conserved in Streptomyces. C...
متن کاملA Novel Two-Component System Involved in the Transition to Secondary Metabolism in Streptomyces coelicolor
BACKGROUND Bacterial two-component signal transduction regulatory systems are the major set of signalling proteins frequently mediating responses to changes in the environment. They typically consist of a sensor, a membrane-associated histidine kinase and a cytoplasmic response regulator. The membrane-associated sensor detects the environmental signal or stress, whereas the cytoplasmic regulato...
متن کاملDeletion of the signalling molecule synthase ScbA has pleiotropic effects on secondary metabolite biosynthesis, morphological differentiation and primary metabolism in Streptomyces coelicolor A3(2)
Streptomycetes have high biotechnological relevance as producers of diverse metabolites widely used in medical and agricultural applications. The biosynthesis of these metabolites is controlled by signalling molecules, γ-butyrolactones, that act as bacterial hormones. In Streptomyces coelicolor, a group of signalling molecules called SCBs (S. coelicolorbutanolides) regulates production of the p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 193 12 شماره
صفحات -
تاریخ انتشار 2011